Minimisation of immunosuppression: Necessary or Necessity?

Jack Galliford

Consultant Renal and Transplant Physician

West London Renal and Transplant Centre Imperial College Renal and Transplant Centre Hammersmith Hospital London

Imperial College Renal and Transplant Centre

The amalgamation of 3 renal units in 2005
St Mary's Hospital, Paddington
Charing Cross Hospital, Hammersmith
Hammersmith Hospital, East Acton

One site chosen
'Critical Mass'
Serve a population of 3 million

Purpose built facility
2 x HDU's [15 beds]
3 wards [60 beds]
1 x 16 bedded Programmed Investigation Unit

Imperial College Renal and Transplant Centre

Activity:

160-170 Renal Transplants annually[50% live donor transplants]10-15 Pancreatic Transplants annuallyOver 1500 transplant follow up patients

1500 Dialysis patients8 Satellite hospitals

Talk outline

Brief literature review Local data

Steroids

Campath/ Alemtuzumab

Steroids

History

The morbidities induced by steroids are huge

Elimination of steroid use has failed

Any success in reducing exposure has been limited by a fear of Increased acute rejection and late allograft loss

Sinclair NR et al Can Med Assoc J. 1992; 147: 645

8% in a Canadian Study [small but multicentre and double blinded]

The impact of this study cannot be overestimated

History of steroid withdrawal

1990's Corticosteroid Withdrawal [CSWD]

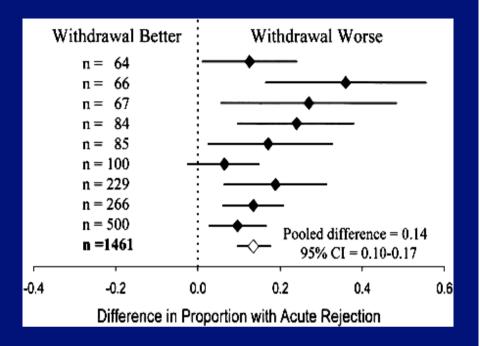
Tacrolimus based immunosuppression

2 centres reported success

1995

FDA approved MMF

Early CSWD using platform of Tac/ MMF [1 week]


1 year AR 21%

Included high risk populations [re-grafts, Afro-Americans, sensitised]

Renal transplantation without steroids

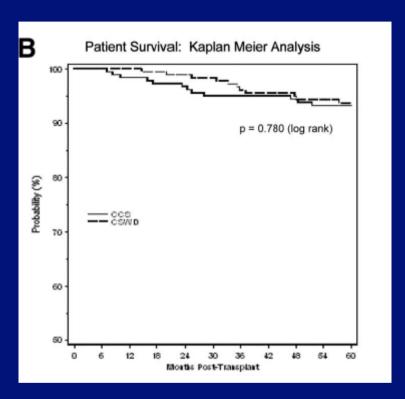
Why?

- 1] Reduce incidence of cardiac and vascular disease
- 2] Reduce incidence of New Onset Diabetes Mellitus [NODAT]
- 3] Avoid other steroid induced complications
- 4] Patient choice
- 5] Improve compliance

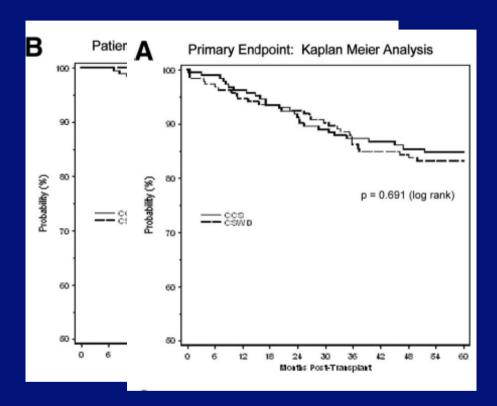
Kasiske, JASN 2001 Steroid withdrawal RR for graft failure 1.40 [p=0.012]

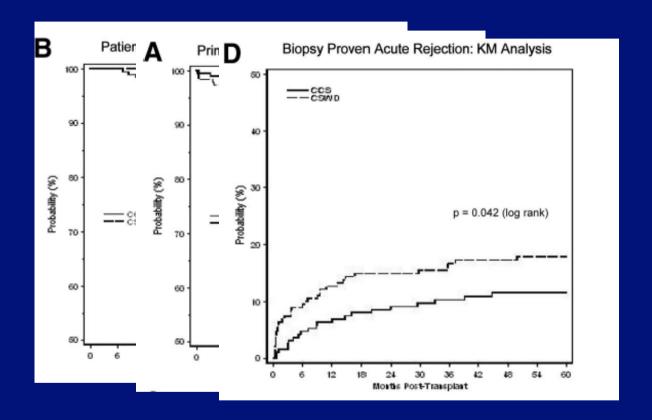
A Prospective, Randomized, Double-Blind, Placebo-Controlled Multicenter Trial Comparing Early (7 Day) Corticosteroid Cessation Versus Long-Term, Low-Dose Corticosteroid Therapy

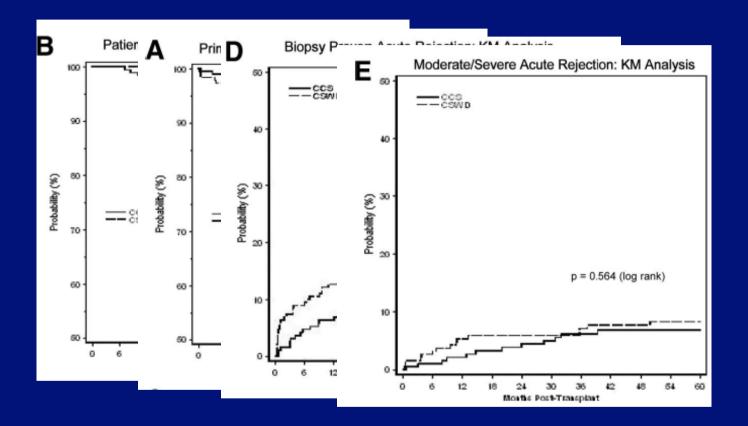
E. Steve Woodle, MD,* M. Roy First, MD,† John Pirsch, MD,‡ Fuad Shihab, MD,§
A. Osama Gaber, MD,¶ and Paul Van Veldhuisen, PhD,∥ for the Astellas Corticosteroid Withdrawal
Study Group


Until 2008, there was **NO** double blinded evidence to refute the Canadian paper 397 patients

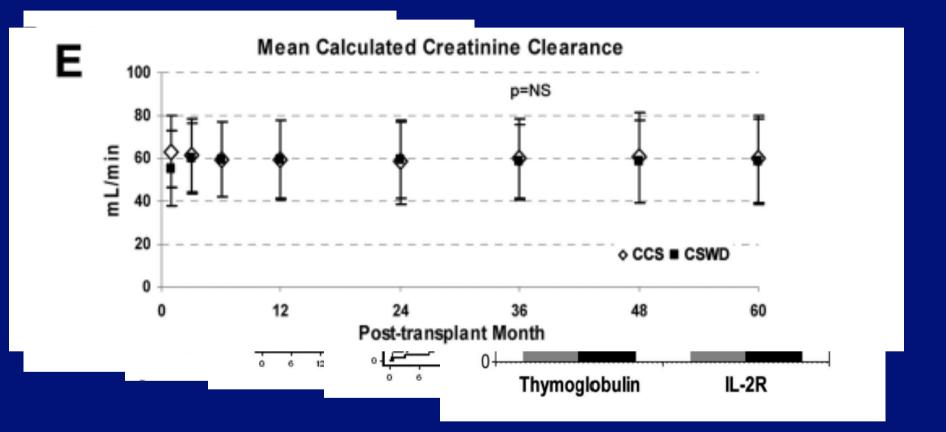
Either


Chronic Corticosteroid Therapy [CCT]
Corticosteroid Withdrawal [CSWD]


Results


Allograft survival [uncensored]

Rejection [1]


Rejection [2]

Rejection [3]

Function

A Prospective, Randomized, Double-Blind, Placebo-Controlled Multicenter Trial Comparing Early (7 Day) Corticosteroid Cessation Versus Long-Term, Low-Dose Corticosteroid Therapy

E. Steve Woodle, MD,* M. Roy First, MD,† John Pirsch, MD,‡ Fuad Shihab, MD,§
A. Osama Gaber, MD,¶ and Paul Van Veldhuisen, PhD,∥ for the Astellas Corticosteroid Withdrawal
Study Group

Conclusion, at 5 years:

[CSWD good]

Less diabetes, fewer infections, less AVN, better weights [short term], better TG's Safe

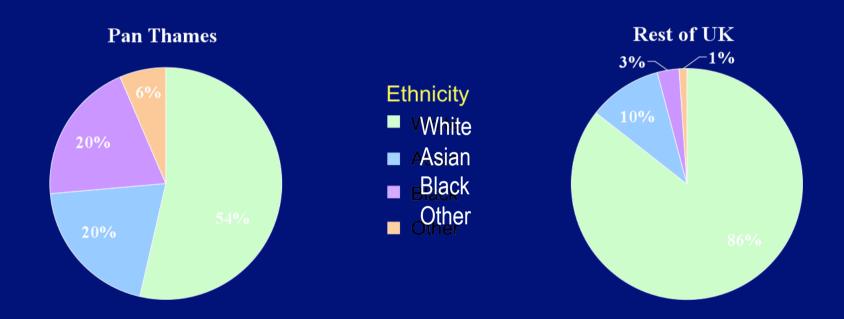
[CSWD bad]

No increased Framingham risk, no change in bp, no LDL/ T chol. Difference No mortality benefit

More rejection

Steroid sparing regimes at Imperial College Renal and Transplant Centre

St Mary's Hospital


1995 Tacrolimus used as CNI

20% incidence of NODAT at 1 year with Tacrolimus, MMF and steroids

Steroid sparing regimes at Imperial College Renal and Transplant Centre

SMH 2000 20% incidence of NODAT at 1 year with Tacrolimus, MMF and steroids

Steroid sparing protocols in West London; the last 10 years

2000 – April 2002

Tacrolimus [0.15mgs/kg/day]

Mycophenolate Mofetil 750mg bd

Steroid sparing [0.5 gms methyl prednisolone operatively, then prednisolone 30mg bd day 0-4; 30mg od day 5-7 then stopped]

Antibody induction for high risk recipients

April 2002 – August 2004*

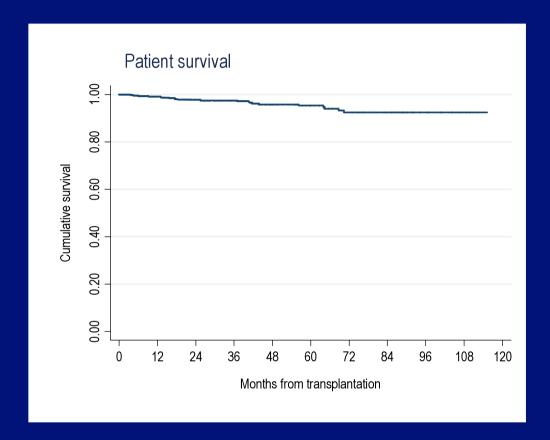
Daclizumab induction day 0 and day 14
Tacrolimus [0.15mgs/kg/day]
Mycophenolate Mofetil 750mg bd
Steroid sparing

August 2004 –

Campath 30 mgs iv peri operatively Tacrolimus monotherapy [0.1mg/kg/day] Steroid sparing and no MMF

> *Borrows et al, Transplantation 2006

Demographics

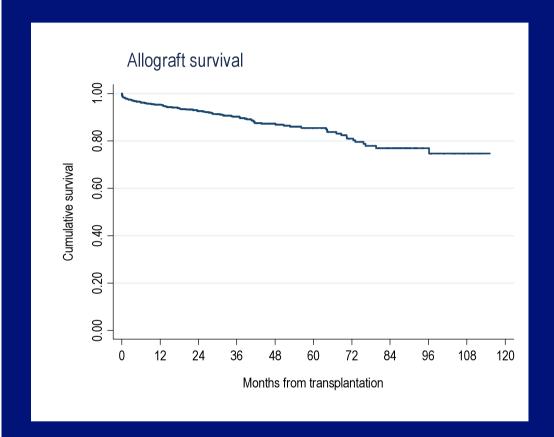

836 patients

		n [%]
Ethnicity	Caucasian Afro Caribbean Asian Other	438 [52.4%] 96 [11.5%] 245 [29.3%] 57 [6.8%]
Gender	F M	321 [38.4%] 515 [61.6%]
Type of graft	Deceased donor Living donor	435 [52.0%] 401 [48.0%]
Induction	Methyl prednisolone only Daclizumab Campath	85 [10.2%] 228 [27.3%] 523 [62.6%]
Primary transplant	Y N	747 [89.4%] 89 [10.6%]

Demographics

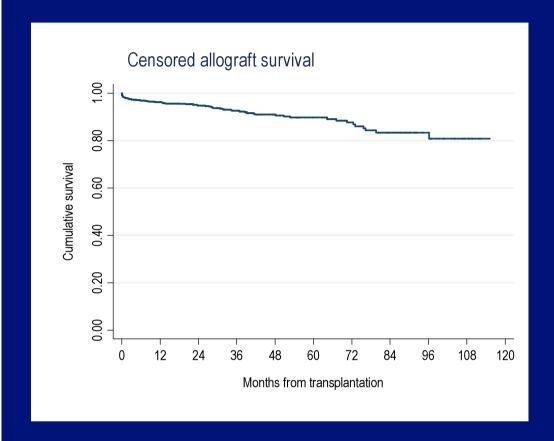
	mean + 1 SD
Recipient age [Years]	46.7+13.0
Total HLA MM	3.2+1.7
Donor age [Years]	44.9+14.6
Length of stay [Days]	13.6+11.6
Follow up [Months]	35.4+28.1

Patient Survival

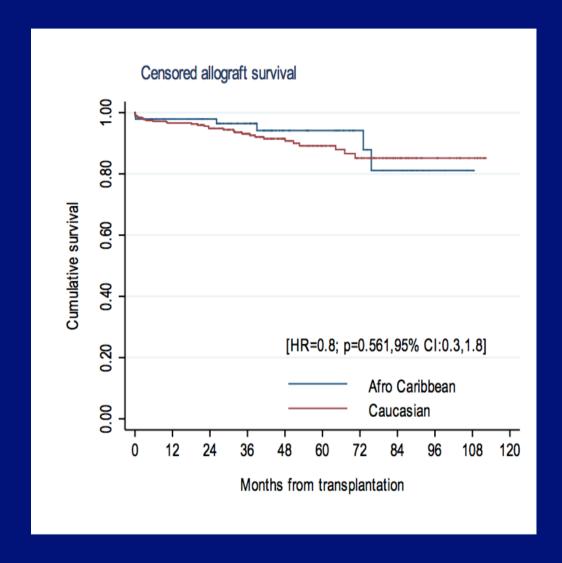

Month	Cumulative survival	[95% ci]
12	98.9%	[97.8%,99.5%]
36	97.3%	[95.7%,98.4%]
60	95.1%	[92.4%,96.9%]
120	92.3%	[87.9%,95.1%]

Patient Survival

10 year patient survival is 92%


Causes of death	n [%]
Cardiac	6 [22.2%]
Malignancy	6 [22.2%]
Sepsis	5 [18.5%]
ESP	4 [14.8%]
Sudden death	3 [11.1%]
Aortic Aneurysm	1 [3.7%]
CMV	1 [3.7%]
Hepatic failure	1 [3.7%]

Allograft survival


Month	Cumulative survival	[95% ci]
12	95.2%	[93.5%,96.5%]
36	90.1%	[87.5%,92.2%]
60	85.4%	[81.8%,88.4%]
120	74.7%	[67.0%,80.8%]

Allograft survival [censored for death with function]

Month	Cumulative survival	[95% ci]
12	96.3%	[94.5%,97.4%]
36	92.6%	[90.2%,94.4%]
60	89.8%	[86.6%,92.3%]
120	80.9%	[73.0%,86.8%]

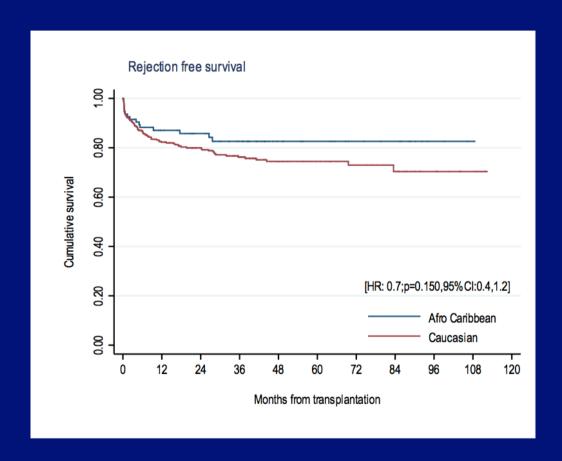
Censored allograft survival

Allograft survival

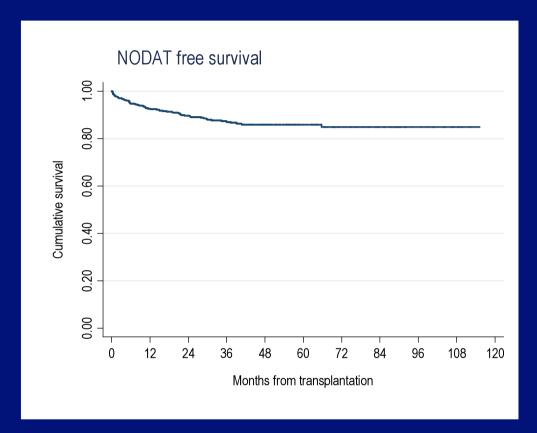

10 year allograft survival [censored for death with function] is 81%

Causes of graft loss

Rejection with compliance	13 [18.8%]
Rejection without compliance	10 [14.5%]
Technical failure	8 [11.6%]
Transplant glomerulopathy	7 [10.1%]
Withdrawal IS [overwhelming sepsis]	4 [5.8%]
Recurrent primary disease	3 [4.3%]
CNI toxicity	1 [1.4%]
Others	23 [33.3%]

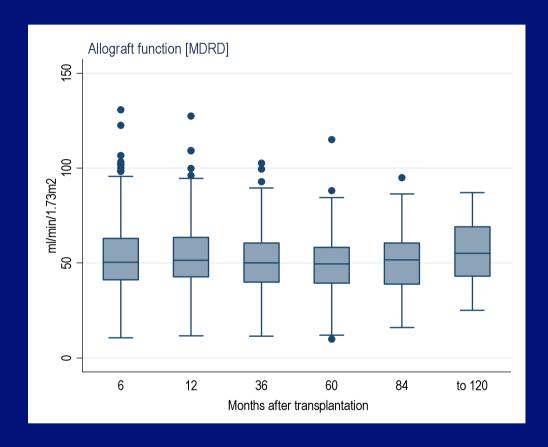


Rejection free survival



Month	Cumulative survival	[95% ci]
12	83.4%	[80.6%,85.9%]
36	78.2%	[74.8%,81.1%]
60	77.2%	[73.7%,80.3%]
120	75.2%	[70.6%,79.2%]

Rejection free survival



NODAT

Month	Cumulative survival	[95% ci]
12	92.6%	[90.1%,94.4%]
36	87.0%	[83.6%,89.7%]
60	85.8%	[82.1%,88.8%]
120	84.9%	[80.7%,88.2%]

Allograft function

Changes in MDRD eGFR -0.024 ml/min/1.73m² per year (95%ci -0.38,0.33) p=0.893

Steroid Sparing with Tacrolimus and Mycophenolate Mofetil in Renal Transplantation

Richard Borrows*, Marina Loucaidou, Jen Van Tromp, Tom Cairns, Megan Griffith, Nadey Hakim, Adam McLean, Andrew Palmer, Vassilios Papalois and David Taube

Conclusion:

Renal and Transplant Units, St. Mary's Hospital, Paddington, London, W2 1NY, UK *Corresponding author: Richard Borrows, richardborrows@doctors.org.uk

Excellent long term graft and patient survival

Low incidence of late rejection

No increased risk of rejection or graft loss in Afro caribs

Low incidence of NODAT

Stable long term allograft function

ABO Incompatible Living Renal Transplantation With a Steroid Sparing Protocol

Jack Galliford, ^{1,6} Rawya Charif, ¹ Ka Kit Chan, ¹ Marina Loucaidou, ¹ Tom Cairns, ¹ H. Terence Cook, ^{1,2} Anthony Dorling, ^{1,3} Nadey Hakim, ¹ Adam McLean, ¹ Vassilios Papalois, ¹ Ranjan Malde, ⁴ Fiona Regan, ^{4,5} Martin Redman, ⁴ Anthony N. Warrens, ^{1,3} and David Taube ¹

(Transplantation 2008;86: 901–906)

10 patients

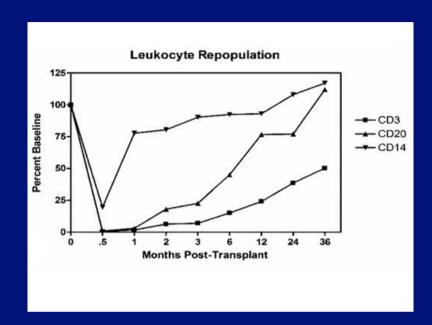
Tacrolimus/ MMF/ steroid sparing

Rituximab and Daclizumab

Centrifuge plasma exchange/ ivlg pre and post op.

Campath

Campath induction in renal transplantation



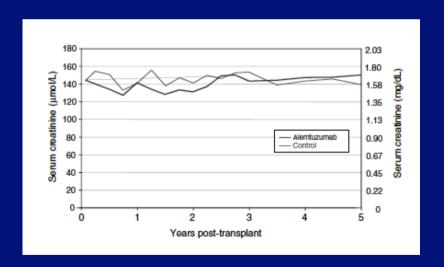
Campath widely used as an induction agent in renal transplantation Many historical studies with a variety of immunosuppressive agents

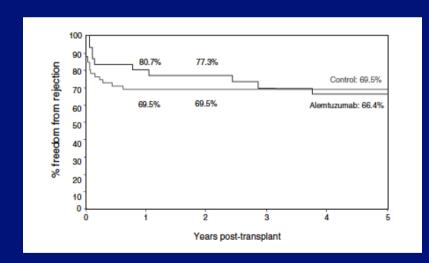
- Ciclosporin
- Sirolimus
- Tacrolimus
- Generally report good short term outcomes [1 3 years]

Only one longer term study [5 years]

Campath 1-H [Alemtuzumab]

CD52 antigen expressed on T cells, B cells and monocytes

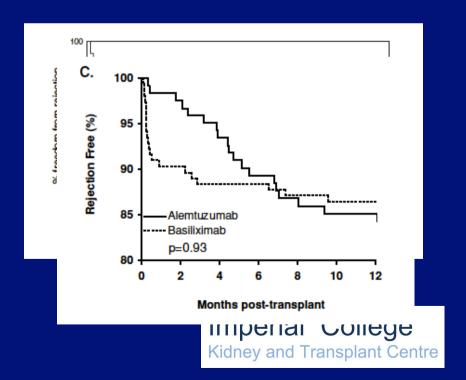

Highly effective depleting antibody


Highly effective depleting antibody
Associated with low rates of rejection

Allows reduction in maintenance immunosuppression

Bloom et al, Transplantation 2006

Alemtuzumab (CAMPATH 1H) Induction Therapy in Cadaveric Kidney Transplantation—Efficacy and Safety at Five Years

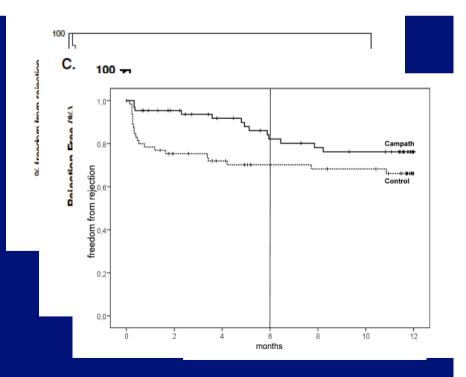

American Journal of Transplantation 2005; 5: 2539–2548 Blackwell Munksgaard Copyright © Blackwell Munksgaard 2005

doi: 10.1111/j.1600-6143.2005.01067.x

Alemtuzumab Induction and Prednisone-Free Maintenance Immunotherapy in Kidney Transplantation: Comparison with Basiliximab Induction—Long-Term Results

Table 6: Serum creatinine values in kidney transplant recipients receiving prednisone-free maintenance immunosuppression and either alemtuzumab or basiliximab induction

Time post-transplant (month)	Alemtuzumab	Basiliximab	p-Value
0	8.14 ± 3.20	9.01 ± 3.72	
1	1.51 ± 0.75	1.54 ± 0.49	ns
6	1.38 ± 0.56	1.39 ± 0.55	ns
12	1.42 ± 0.59	1.36 ± 0.48	ns
24	1.41 ± 0.52	1.45 ± 0.68	ns
36	1.52 ± 0.72	1.42 ± 0.65	ns


American Journal of Transplantation 2005; 5: 2539–2548 Blackwell Munksgaard Copyright © Blackwell Munksgaard 2005

American Journal of Transplantation 2008; 8: 1480–1485 Blackwell Munksgaard © 2008 The Authors Journal compilation © 2008 The American Society of Transplantation and the American Society of Transplant Surgeons

doi: 10.1111/j.1600-6143.2008.02273.x

Alemtuzumab (Campath-1H) and Tacrolimus Monotherapy After Renal Transplantation: Results of a Prospective Randomized Trial

	Campath	Control	
	group	group	
	n = 65	n = 66	
Infections			
Viral: non-CMV	16	15	RR = 1.08 (0.59-2.00
CMV	18	8	RR = 2.28 (1.07-4.88
Bacterial	17	29	RR = 0.60 (0.36-0.97
Fungal	7	9	RR = 0.79 (0.31-1.99
Cardiovascular	13	14	RR = 0.94 (0.48-1.85
Gastrointestinal	30	30	RR = 1.02 (0.70-1.47
Hematologic	49	48	RR = 1.04 (0.85-1.27
Metabolic			
Hyperlipidemia	19	18	RR = 1.07 (0.62-1.85
New onset diabetes	2	2	RR = 1.02 (0.15-6.99
Malignancies	0	0	

Campath at Imperial College

In 2004, we set out to develop a simple immunosuppressive regime to

- 1. Reduce Tacrolimus nephrotoxicity [use lower Tac levels]
- 2. Reduce costs
- 3. Steroid sparing
- 4. Comply with NICE guidelines [no MMF]

In November 2005, we started a formal RCT. Recruitment finished in April 2008.

3 year results.

Study arm:

Campath induction, 30 mgs iv peri operatively Tacrolimus monotherapy [0.1 mgs/kg/day]
Levels by LCMS 5 – 8 ng/ml
Steroid sparing
No MMF

Control arm:

Daclizumab induction, 2.0 mgs/kg day 0 and day 14

Tacrolimus 0.15 mg/kg/day

Levels by LCMS 8 -11 ng/ml for the first 12 months, subsequently 5 – 8 ng/ml

Steroid sparing

MMF 750 mgs bd to achieve MPA levels 2 -3 mg/l

Exclusions

- 1] Patients who had received significant amounts of myelosuppressive agents
- 2] Patients transplanted with grafts from NHB donors
- 3] Patients who are hepatitis B or C+ or HIV +
- 4] SPK transplants
- 5] ABOi or FXM + transplants

Primary Outcomes

Patient survival with functioning graft at 1 year. [10% non inferiority margin]

Secondary Outcomes:

- 1] Allograft function
- 2] Occurrence and nature of rejection
- 3] Development of Donor specific antibodies [DSAbs]
- 4] Surveillance biopsies 6 12 months
- 5] Adverse events [infection, PTLD, Al disease]
- 6] Drug costs

Ethics

COREC approval

Local ICKTI approval

Trial was registered at clinical trials. gov, identifier NCT00246129

West London CamTac RCT design

- 1] Stratified for live and deceased donors
- 2] Randomization: 2:1 Campath and Daclizumab MMF arms
- 3] Powered to detect a 10% non inferiority in patient survival with functioning graft during the first year
- 4] Target enrolment: 80 patients in the Campath arm and 40 in the Daclizumab MMF arm Recruitment completed on 2nd April 2008

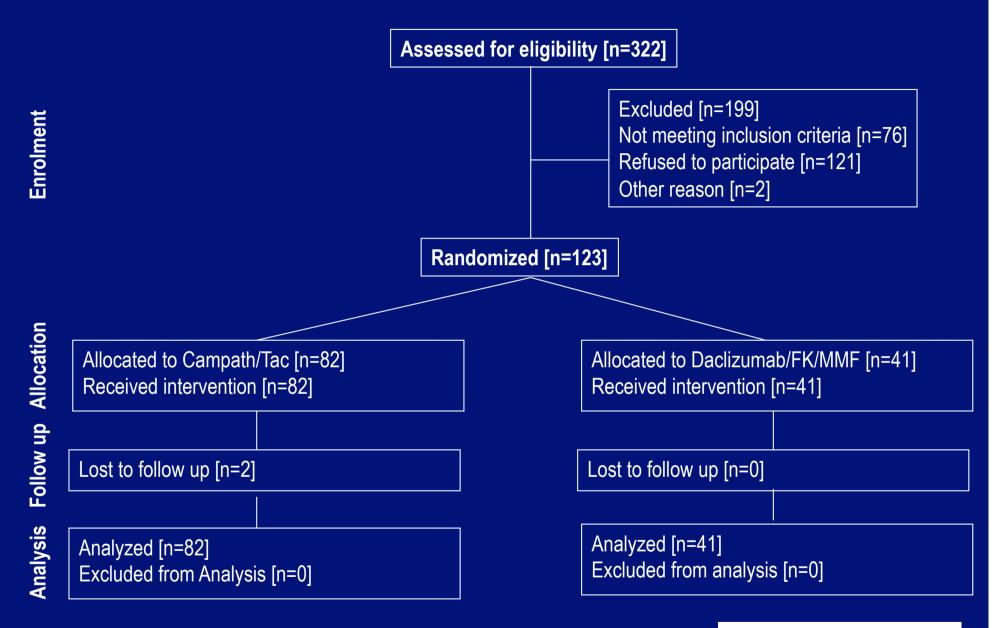
Donor type	Campath n=82	Daclizumab - MMF n=41	
Deceased donor	30 [36.6%]	16 [39.0%]	
Live donor	52 [63.4%]	25 [61.0%]	

Rejection

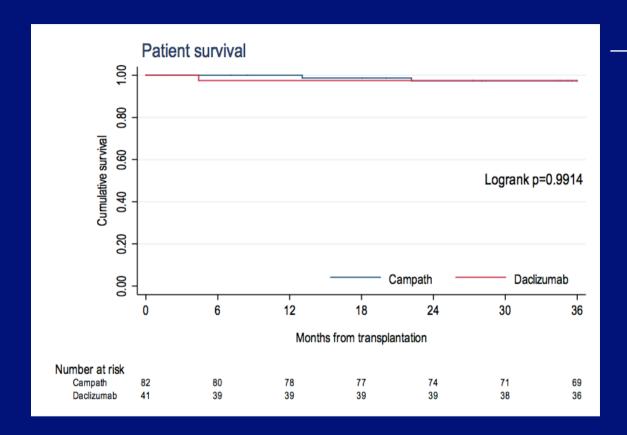
Rejection was diagnosed by biopsy

Rejection was treated with iv methyl prednisolone, oral prednisolone for 3 months and the addition of MMF.

Prophylaxis

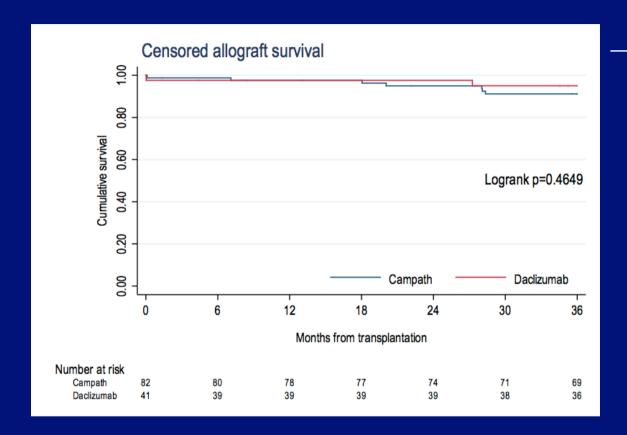

CMV: Valganciclovir for 3 months

PCP: Septrin for 6 months

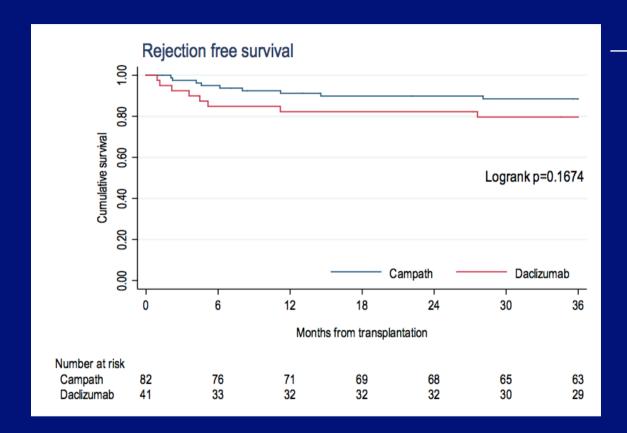

Statistics

Student t, Fisher Exact, Log rank and Wilcoxon tests Rate ratio estimated using generalised linear model [Poisson]

Stata 11.1 [StataCorp, Texas]



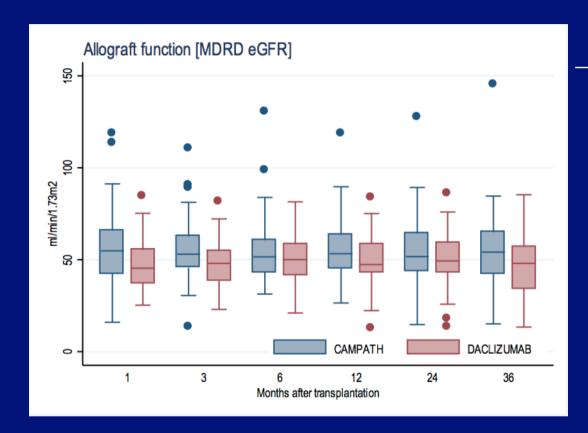
Patient Survival


	Campath	Daclizumab
1	100.0%	100.0%
3	100.0%	100.0%
6	100.0%	97.5%
12	100.0%	97.5%
24	97.4%	97.5%
36	97.4%	97.5%

Allograft survival [censored for death with function]

	Campath	Daclizumab
1	98.8%	97.6%
3	98.8%	97.6%
6	98.8%	97.6%
12	97.6%	97.6%
24	95.0%	97.6%
36	91.2%	95.1%

Rejection free survival



	Campath	Daclizumab
1	100.0%	97.5%
3	97.5%	92.5%
6	95.0%	84.9%
12	91.2%	82.3%
24	89.9%	82.3%
36	88.6%	79.6%

Type of rejection

Banff Class	Campath	Daclizumab	р
la	7 [8.5%]	8 [19.5%]	0.08
lb	2 [2.4%]	1 [2.4%]	0.99
Ilb	3 [3.7%]	1 [2.4%]	0.59
aAMR	1 [1.2%]	1 [2.4%]	0.99

Allograft function

	Campath	Daclizumab	р
1	55.9 + 4.2	45.9 + 5.3	0.006
		45.8 <u>+</u> 4.9	
6	52.9 <u>+</u> 3.6	48.5 <u>+</u> 4.7	0.166
12	55.4 <u>+</u> 3.6	49.4 <u>+</u> 4.8	0.060
24	54.6 <u>+</u> 3.8	49.4 <u>+</u> 4.9	0.116
36	54.8 <u>+</u> 4.9	47.5 <u>+</u> 6.7	0.113

Treatment survival

	Campath	Daclizumab
1	95.1%	95.0%
3	86.6%	90.0%
6	80.5%	79.8%
12	75.6%	74.6%
24	73.1%	74.6%
36	70.4%	72.1%

Adverse events

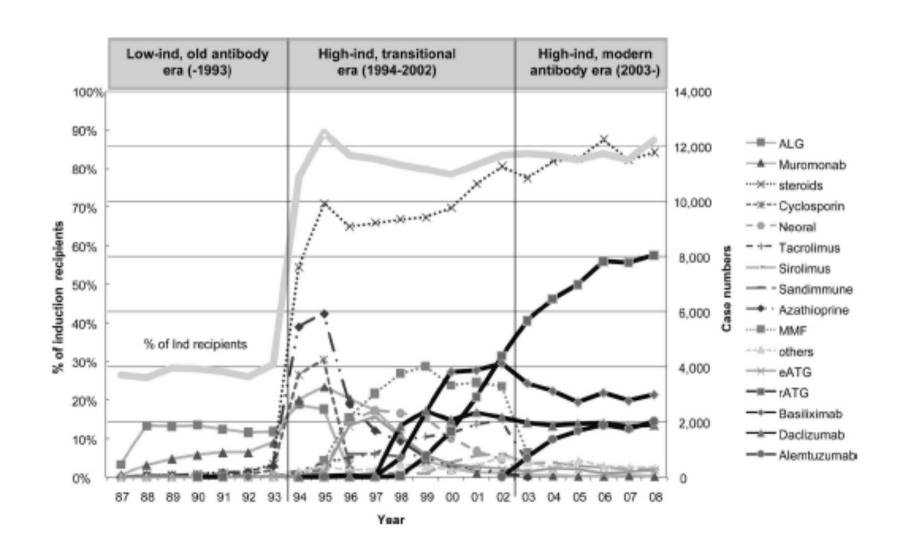
	Campath	Daclizumab	Relative risk [95% CI]	p value
Infections*				
ÜTİ	31 [38-6]	9 [22·9]	1.6 [0.49-5.81]	0.406
Bacteraemia	15 [18·6]	9 [22-9]	0.82 [0.24-2.73]	0.743
Wound infection	6 [7.6]	6 [15·4]	0·5 [0·16-1·51]	0.213
CMV Disease	1 [1·2]	4 [10·2]	0.12 [0.01-1.08]	0.058
Others	6 [7.6]	2 [5·1]	1.47 [0.63-7]	0.628
Total infections	59 [73-2]	30 [76·3]	1.0 [0.62-1.47]	0.839
Other adverse events:				
PTLD	0	0		
ITP	1	0		
Other auto-immune disease	0	0		
New onset diabetes	4	5		0.229

^{*}Episodes [Incidence per 100 patient-years]

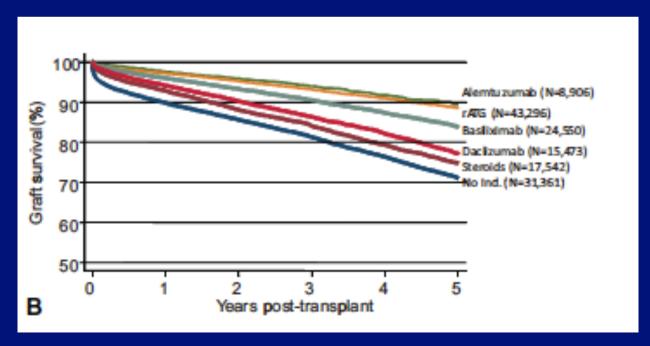
Drug costs [mean per patient, per year, using BNF prices]

		1st year	Subsequent years
Campath	Induction	£275	£0
	Tacrolimus	£3,082	£3,200
	MMF	£130	£25.16
	Total	£3,488.00	£3,225
Daclizumab	Induction	£2,505	£0
	Tacrolimus	£3,723	£3,110
	MMF	£1,293	£1,342
	Total	£7,521.00	£4,452
	Saving per patient	£4,033.00	£1,226.84
	Saving per 100 patients	£ 400k	£120k

Summary of CamTac


- 1] 3 year patient and allograft survival are similar in both groups.
- 2] Trend to better allograft function in Campath group
- 3] Incidence and nature of rejection are similar in both groups
- 4] No increased late rejection in the Campath group
- 5] Campath regime is significantly cheaper

What's going on elsewhere?



Induction Immunosuppression Improves Long-Term Graft and Patient Outcome in Organ Transplantation: An Analysis of United Network for Organ Sharing Registry Data

Junchao Cai and Paul I. Terasaki

Question] Minimisation of immunosuppression: Necessary or Necessity?

Answer] Minimisation of immunosuppression: Necessary AND Necessity?

Acknowlegements

Ed Chan

David Taube

Adam McLean

Other colleagues at Imperial College Renal and Transplant Centre